Noncommutative Residues and a Characterisation of the Noncommutative Integral

نویسندگان

  • STEVEN LORD
  • FEDOR A. SUKOCHEV
چکیده

We continue the study of the relationship between Dixmier traces and noncommutative residues initiated by A. Connes. The utility of the residue approach to Dixmier traces is shown by a characterisation of the noncommutative integral in Connes’ noncommutative geometry (for a wide class of Dixmier traces) as a generalised limit of vector states associated to the eigenvectors of a compact operator (or an unbounded operator with compact resolvent), i.e. as a generalised quantum limit. Using the characterisation, a criteria involving the eigenvectors of a compact operator and the projections of a von Neumann subalgebra of bounded operators is given so that the noncommutative integral associated to the compact operator is normal, i.e. satisfies a monotone convergence theorem, for the von Neumann subalgebra.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singlet scalar dark matter in noncommutative space

In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered,  but our information about  the nature of dark matter is still limited. There are such particle candidates as  scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...

متن کامل

A note on power values of generalized derivation in prime ring and noncommutative Banach algebras

Let $R$ be a prime ring with extended centroid $C$, $H$ a generalized derivation of $R$ and $ngeq 1$ a fixed integer. In this paper we study the situations: (1) If $(H(xy))^n =(H(x))^n(H(y))^n$ for all $x,yin R$; (2) obtain some related result in case $R$ is a noncommutative Banach algebra and $H$ is continuous or spectrally bounded.

متن کامل

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

An Explicit Viscosity Iterative Algorithm for Finding Fixed Points of Two Noncommutative Nonexpansive Mappings

We suggest an explicit viscosity iterative algorithm for finding a common element in the set of solutions of the general equilibrium problem system (GEPS) and the set of all common fixed points of two noncommuting nonexpansive self mappings in the real Hilbert space.  

متن کامل

From Noncommutative Bosonization to S-Duality

We extend standard path–integral techniques of bosonization and duality to the setting of noncommutative geometry. We start by constructing the bosonization prescription for a free Dirac fermion living in the noncommutative plane Rθ. We show that in this abelian situation the fermion theory is dual to a noncommutative Wess–Zumino–Witten model. The non–abelian situation is also constructed along...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009